Chapter 4.3

Section H,3 Jrreducibles and unique factorization $\quad F$-a field except elements of F
Th H. 14 Every polynomial (element of $F[x]$) can be presented as a product of irreducibles in an essentially unique way
(The Jundamental Theorem of Arithmetic for $F[x]$)
Recall $p \in \pi / 2$ is called a prime if it is divisible by nothing bert

$$
\begin{gathered}
p \neq 0, \pm 1 \\
\{1,-1\} \text { - units in } 7 / 2
\end{gathered}
$$

A prime is divisible by nothing except units

$$
\begin{aligned}
& \underbrace{l_{3}-1}_{-p=(-1) p} p_{0}-p
\end{aligned}
$$

unit
and itself times a unit
Def f and $g \in F[x]$ are associates if $f=c g$ with $c \in F, C \neq O_{F}$
(f is an associate of g, or
g is an associate of $f: g=c^{-1} f$)
Clearly, every polynomial is divisible by itself, units, its associates
Def $p \in F[x]$ is said to be irreducible if its only divisors are $P \notin F$

Thil.ll $f \in F[x]$ is reducible (not irreducible) iff
$\notin F \quad$ \& can be written as a product of two polynomials of loner degree
Analog: $m \in D_{L}$ is not a prime if $m=a b$ north $|a|<|m|$

$$
m \neq 0, \pm 1 \quad|b|<|m|
$$

Hs we derived Th 1.5 from 1.4. let us derive from Thy. 10 the following
Prop $\operatorname{det} p \in F[x]$ be an irreducible polynomial.
If plebe, then plo or ple (or both)
Pf To prove: "if pxb, then plea"
It suffices to prove the following:
"if $p x b$, then $(p, b)=I_{F}$ "
Thh.10: If plbc and $(p, b)=l_{F}$, then ple
pub implies that associates of p also don't divide b :
if (up) $\mid b$ then $b=u p r=p(u r)$, therefore
Thus, since p is irreducible and $p \times b$, the only pleb
conermon divisors of p and b are units - non-zero polynomials of degree zero.
The only monic polynomial of degree O is I_{F}. Thus $(p, b)=I_{F}$ as required.

Cor $H_{1} 13$ (parallel to Cor 1,6 for ∇_{2})
Let $p \in F[x]$ be an irreducible polynomial.
If $p / a_{1} \ldots a_{n}$ then p / a_{i} for some: (p must divide at least one of theme)
The preparations for the proof of The Fundamental Theorem of Arithmetic are finished.

The proof consists of two parts:
roxistence of a presentation - parallel to the proof of Th 1.7
Uniqueness of the presentation - the proof is based on Corthl3
"If we have Euclid's Lemma in a ring, then we have the uniqueness clause of the Fundamental Theorem of Arithmetic in the ring" Examples: $\mathbb{Z}, F[x](F-a$ field)

